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A system of boundary integral equations of the first kind with piecewise-smooth kernels, to which the boundary-value problems 
of electroelasticity reduce in the case of steady-state oscillations, is formulated. The proposed approach does not use the 
idea of fundamental solutions and is based solely on an analysis of the characteristic polynomial of the electroelasticity operator. 
© 2000 Elsevier Science Ltd. All rights reserved. 

The extension of the method of boundary integral equations to models describing the connected fields 
in continuum mechanics---electroelasticity [1, 2], magnetoelectroelasticity [3], and thermoelectroelasticity 
[4], is based, as a rule, on potential theory and the reciprocity theorem, on the construction on fundamental 
and singular solutions for the corresponding operators, and generalized limit theorems for analogues 
of the potentials of a single and a double layer [5]. Whereas in the isotropic theory of elasticity these 
solutions are expressed in explicit form in terms of elementary or special functions, for the models of 
connected problems indicated, only integral representations of the fundamental solutions can be 
constructed, which, to a considerable extent, reduces the effectiveness of any further numerical analysis 
of the systems of boundary integral equations constructed based on the boundary-element method [6]. 

Another approach to the formulation of systems of boundary integral equations of the anisotropic 
theory of elasticity was proposed in [7], which enables the boundary-value problem for a finite body to 
be reduced to a system of boundary integral equations of the first kind with piecewise-smooth kernels 
without using fundamental solutions. This approach is based solely on the well-known properties of 
the analyticity of the Fourier transforms of functions with a carrier in a limited region, and an analysis 
of the characteristic polynomial of the corresponding operator and leads to a system of boundary integral 
equations in the unit circle (the plane case) or the unit sphere (the three-dimensional case). A 
formulation of the corresponding boundary integral equations for problems of the isotropic theory of 
elasticity and acoustics was given in [8, 9], and also a numerical construction of the corresponding inverse 
operators by a combination of the boundary-element method and the Tikhonov regularization method. 
An important advantage of the proposed algorithm is the fact that the coefficients of the algebraic systems 
obtained can be calculated in explicit form, rather than in the form of single or double integrals, as in 
the classical version of boundary equations. In view of the fact that the procedure of inverting a Fredholm 
operator equation of the first kind is ill-posed, this scheme requires regularization [10] in some form. 

Note that this approach cannot be applied directly to operators, characteristic of polynomials which 
contains a zero component (the Laplace operator, the static theory of elasticity and electroelasticity). 

Below we propose an extension of the method of boundary integral equations of the first kind to 
problem of electroelasticity. The problems involved in the numerical realization are discussed, and 
numerical examples are given. Note that the proposed system of boundary integral equations enables 
the oscillations of an electroelastic medium to be analysed when there is attenuation (within the 
framework of the theory of complex moduli), and this approach is particularly effective when it is only 
required to investigate boundary characteristics (the displacements of boundary points, the potential 
difference, the charge distribution under an electrode, etc.). 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  T H E  S E T T I N G  U P  O F  T H E  
S Y S T E M  O F  B O U N D A R Y  I N T E G R A L  E Q U A T I O N S  

Suppose a bounded simply connected region V ~ R n (n = 2, 3), stellar with respect to a certain sphere, 
is bounded by a piecewise-smooth surface S. The region V is occupied by an electroelastic medium, 
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which performs steady oscillations with frequency co due to the action of a potential difference 24)o, 
applied to a pair of electrodes S+ and S_. We will assume that the remaining part of the boundary SD 
is not an electrode; the whole boundary S is stress-free. Note that the general approach to obtaining 
boundary integral equations does not change if we consider the problem of the action on the body V 
of mechanical loads, including contact-type loads (and also in the case of the connection of a piezoelectric 
element in a certain electric circuit), and also the problem of kinematic or mixed mechanical boundary 
conditions. 

The boundary-value problem is described by the following system of equations [11] 

Ore.i, i + p t O 2 u  m = 0 ,  Din, m = 0 

O,,~i = cm#.tu~.l + e~.,~/~.k, D,,, = e,,ktu~.t- ~,,k¢~,~ (1.1) 

with boundary conditions 

~ i n j  Is= 0, ~ Is+ - = +~0, D,,,nm Iso = 0 (1.2) 

Here  urn, Dm and nj are the components of the displacement vectors, the electric induction and the unit 
outward normal, respectively, (Ymj, Cmjkl, ekmj and 3ink are the components of the stress tensors, the 
elasticity constants, the piezoelectric constants, and the permittivities, dp is the electric potential and p 
is the density. 

We will apply a Fourier integral transformation to Eqs (1.1); eliminating the transforms of the stresses 
and the induction, we obtain the system 

( CmjklOl, jO[ l -- ptO25z,,t: )U k (0~) + ekmiO~.iO~k ~(O~ ) = V m (0~) ,  

(1.3) 
e,,t~to~,,,o~tU,~ (oc) - 3miCtmt~i~(ot) = V 4 (o~) 

where 

V,, (ct) = ~ [omini - i~ j  (C,,~iklU k + elmj(#)nl ]ei(e"X)dS 
s 

Uk(O~ ) = ~ uk(x)eiW"X)dV,  ~(o~) = ~ (~(x)eit~'X)dV (1.4) 
v v 

V4(O~) = ~ [D,nn,, , - ia,,, (e,,,klUk -- ~,,t(P)nl ]eita'x)dS 
s 

Solving system (1.3) for the components Uk(Ot) and ~(ct), we obtain 

U~(a) = Pk'(°t ' to)V"(a), ~(ot) = P'4 ' ' (a 'co)Vm(a) ,  m = 1,2,3,4 (1.5) 
p0(0t, to) p0(a, tO) 

p0(t~, tO) = det (A(ot, tO)) 

whereA = llAmk, (ct, tO) II is the matrix of linear system (1.3) with respect to unknowns Uk(ct) and O(a):  
its elements can be represented in the form 

A,,,t.(ot, o~) = 2 a,,~iklOtl~ I - tO b,,zt~,,ik 

b I = b 2 = b 3 = p, b 4 = 0, amjl~ t = C,,!ikt, m, k = 1, 2, 3 

amj41 = a4jml = elmj, m = 1,2,3, a4.j41 '- --3jl 

Pkm(Ot, tO) are the cofactors of the elements of the matrix A(a ,  tO), which are sixth-order polynomials 
in the components otj, and p0(~t, o~) is an eighth-order polynomial in ctj. 

The polynomialp0(ct, to) will be called the characteristic polynomial of the electroelasticity operator. 
This polynomial has eight complex manifolds of zeros (in the plane case when n = 2 there are six) 
ct~ = __.0t3j(ct', to) (j = 1, 2, 3, 4), ct' = (oq, ~2), while for the electroelastic medium among these 
manifolds there is the origin of coordinates, and the previously used approach [7] cannot be applied 
directly in this case (one of the boundary equations becomes the condition for the boundary-value 
problem 
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f D,,dS = 0 
s 

to be solvable and does not enable the system of boundary integral equations to be closed). 
However, by analysing relations (1.5) we find that there right-hand sides are irregular when ~t 3 = 

_+~t3y(ot' , co), while the left-hand sides are analytic functions for uj(x), ~(x) ~ Wt2(V). Hence, to eliminate 
the contradiction which arises we need to require that the following equalities should be satisfied 

Pkm (Or', __+O{3j (O{ ", 0)), 0)) V m (0~ ', --.0{3 j (O{', CO)) = 0 (1.6) 

k , j =  l , 2 , 3 , 4 ,  oc' ~ C "-1 

It is easy to see that part of relations (1.6) is a consequence of the remaining ones, and we will 
therefore henceforth assume that k = 1. These relations are unique conditions of solvability of the initial 
boundary-value problem, connecting the boundary values of the unknowns ui Is, D ,  IS±, ~ I so and the 
potential ~0 

GO(~ .x)D+(x)dSx + I G,}(~' .x)O (x)dS~ + I G~.,/(¢~',x)u,,,(x)dSx + 
s+ s_ s 

+ I G~4j(°~'.x)f~(x)dSx = O:oH?(°~') (1.7) 
so 

where 

+ • " + t GO (or, x) = P14 (ix, t.o)e 'ta'x), G~m j (or, x) = -iO~sntak.,.,,,tpl k (ct, oa)e i(ct'x) 

for ct3 = _ %j(tx', m), j =  1,2,3,4, m= 1,2,3,4 (1.8) 

+ I c?4j(o.'...)dSx 
S+ S_ 

Here Plm(Ot, o)) are the cofactors of the elements of the first row of the matrix Amk(Ot, '03). 
System (1.7) is a system of boundary integral equations of the first kind with piecewise-smooth kernels, 

and discontinuities can only occur along the lines of change of the boundary conditions and on the 
irregular lines on the boundary S. Hence, (1.7) generate a completely continuous operator, which 
converts the function from a certain set Q(S) into smooth functions of ¢t' ~ C nq. In the general case, 
the procedure for inverting such an operator is ill-posed in view of the fact that the operator, inverse 
to the completely continuous operator [10] is unbounded. In this case, in view of the special form of 
the right-side of (1.7), the problem of such inversion is conditionally well-posed and allows of an effective 
procedure of numerical inversion, which is based on a combination of the main ideas of the boundary- 
element method and the Tikhonov regularization method [10]. At the first stage the boundary S is 
approximated by a polyhedron, the faces of which we will henceforth call the. elements. Within each 
element the unknown functions are interpolated in terms of the nodal unknowns, and an algebraic system 
is then set up on the basis of boundary equations (1.7) using the collocation method. Systems of this 
type are ill-conditioned in view of the complete continuity of the integral operator on the left-hand 
side of (1.7) and require regularization when inverted. 

We will illustrate this technique in more detail using two simple examples of the cases most often 
encountered in practice of analysing electroelastic bodies for a class 6 mm piezoelectric ceramics 
polarized along the x3 axis. 

2. THE BOUNDARY I N T E G R A L  EQUATIONS 
FOR A N T I P L A N E  D E F O R M A T I O N  

Suppose S is the interior of a cylindrical region with boundary S = L x Ri, where L is the boundary 
of the bounded simply connected region in thexrx2 plane, where L = L± U Lo,  and L± is the electroded 
part of the boundary. We will assume that ut = u2 = 0, us = u(xb x2), ~ = t~(xt, x2). The system of 
equations of electroelasticity has the form [11] 

c44 z~u + ej5 A~ + pcoZu = 0, ej sAu - al 1A~ = 0 (2.1) 

We will further consider the case when the boundary L is stress-free, and oscillations are excited 
by the potential difference on the electrodes L ±, which corresponds to the following boundary conditions 
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In this case 

bu O0 c 4 4 ~ + e ~  ~ =0, 

0 IL~ = 00 

bu 301 = 0 

(2.2) 

p0(~x,m) = (ot~ + a2z)[:9,1pc02 - (3,,c4, + e~s)(cx ~ + c~)] 

is a fourth-degree polynomial and the corresponding manifolds can be found explicitly 

+ + ~ 2 2 :91 lP 0-12 
or21 = _ioq, eta2 = _i - k, ; k, = (2.3) 

:91 IC44 + e~5 

and the boundary equations of the form (1.7) with respect to the unknowns U IL, c~u/c~nJL+ have the 
following structure 

k - ~n - on.] L 

+ ~ Gf4j(oq,x)*(x)dLx = %/-/~(al) (2.4) 
LD 

j = l , 2 ;  ~1~ C1 

In this case the kernels of the characteristic operators can be represented in the form 

G~(oq,x)=ensexp[ioq(xn +/x2)], G~t(oq,x)=-al l  exp[ian(xl +ix2)] 

G~-31 (CX 1 ,x )  = - G~I (~1 ,x) ,  G~'41 (0~ I ,x)  = - G f l  (~1 ,x )  

= - G~41 (oq, x)dL x 
L+ 

Gf2 (¢x I , x) = exp[i(cx nx n + i ~ n  z - k, z x 2)], G~-32 (oq, x) = - ~nn G~ (cx t , x) 

+ + + 
G~2 (~ I ,x) = 0, ,x) = 0, = 0 G~42 (0~ I H~(~ I ) 

The solution is constructed by a combination of the boundary-elements method and the regulariza- 
tion method. We will assume that the boundary of the region L is divided into N elements. At the first 
stage the boundaries L± and LD are approximated by the dashed lines 

NI N2 
L+ = u L.,  L o =  ~ Lq 

q=l q q=Ni +1 

where Lq has the following parameterization x .= x ° + ~qt, and its parameters area expressed in terms of 
the coordinates of the ends of qth element using the formulae 

xqj° = (Xqj +xq+t))/2, ~qj=(Xq+lj--Xq])[2, j = l , 2  

Further, in the simplest version, on each of the elements Lq we assume 

IJ]Lq=U q, OU/~nlLq=l) q, Ot~]3n[Lq=~ q, ~[Lq=f~q 

and these nodal unknowns satisfy the following system of linear algebraic equations 

N t +N 2 + NI NI +N 2 
qE__ Z ± -+ ~_, B~'pqjUq + (a~q.tV q + A~pq.iVq)+q=N,+lB'~pqj(~ q = ~oHj ( a l , , )  

q=l I 

p = 1,2 ..... NI + N2, j = 1, 2 (2.6) 
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where the coefficients of the system are found explicitly in terms of the functions Iql (cg), Iq2(Ctl) 

lq,(O~,)= lq(~,,  ++-i~,), I,~2(~1)= lq(Ot 1, + i ~  - k ~ )  

lq (0~ I , Ot 2) = J exp[i(~, x)]dL x = exp[i(c~, xel+t !] - exp[ i (a ,  Xq)] 
Lq i(c~, pq) 

For example 

(2.7) 

+ + 
Alpqi elsl~-i(alp), j 1,2; B~q 2 +- ± = = = (5  2 ,nq)lq2(~l ) 

~IpEC ' ,  ~ = ( a , ,  +i~-k2.)nq=(P2q,-P,q) 
Thus, system (2.6) is an ill-conditioned system, but its right-hand sides are operators of the same form 

as the operators on the left-hand side. The simplest Tikhonov regularization of system (2.6) enables 
us to construct a fairly stable solution. 

We will carry out a series of calculations for the rectangle [0, a] x [0, b], the sides of which L± are electroded 
and to which a potential difference 2¢0 is applied, where 

L + = l O ~ x  I ~<a, x2=b},  L _ = l O ~ x  1 ~<a, x2=O} 

Here the regularization parameter a has been varied from 10 -4 to 10 7, the wave number k. has been varied from 
0 to 12, the number  of elements N has been varied from 16 to 32, and the collocation points a~p, which belong to 
the real axis, have been varied, and also a comparison has been carried out with the exact solution 

u(xl,x2) = %311 5sin(k,x 2 - b  I ) 
Ael5 

--~-[~5 sin(k,x 2 - b 1 ) - (1 + ~)(k,x 2 - bj )cos(b I )] ¢(xl, X 2 ) 

k~..b ~ e125 
A=fsin(bl)-bl(l+8)cos(bt), b l = ~ ,  = ~  

311c44 

(2.8) 

In Fig. l (a)  we show the distribution of the boundary values of the displacement u3 for TsTS-19 ceramics 
[11] for k.a = 4 and a = b = 1: curves 1 and 2 correspond to u3(xl, 0) and u3(xl, b), and curve 3 corresponds to 
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ua(0, x2). In Fig. l(b) we show similar distributions for the boundary values of the induction D2(xl, 0) and 
D2(xl, b) (curves 1 and 2, respectively) and the potential ~(0, x2) (curve 3). The continuous curves represent the 
exact solution (2.8), the open points denote the approximate solution for N = 16, and the solid points are for  
N = 32. Note ~he fairly good agreement between the exact and the approximate solutions; the relative error does 
not exceed 5%. 

3. T H E  B O U N D A R Y  I N T E G R A L  E Q U A T I O N S  
F O R  P L A N E  D E F O R M A T I O N  

Consider the plane deformation of an electroelastic medium, polarized along the Ox 3 axis. Suppose 
V is a cylindrical region with generatrix parallel to the Ox2 axis and directrix L. We will assume that 
U 1 = Ul(Xl,X3) , U 2 = 0, U 3 = U3(Xl, X3), t~ = t~(Xl, X3). 

In this casep0(et, co) = detA is a bicubic polynomial in txj, and the elements of the matrixA have the 
form 

All = ClltX~ + C44~23 - PO32, A12 = AXl = (c44 + c13)O~1(X3 

AI 3 = A31 = (el5 + e3 l)0q~3, A22 = c44t~ + c331x~ _ p~2 (3.1) 

A23 = A32 = e150~l 2 + e33(t 2, A33 = -3110~ 2 -- 333~ ~ 

In Fig. 2 we show the real and imaginary parts of the manifold a~.(al, q(c33/P)) (j = 1, 2, 3) for TsTS-19 
piezoceramics (al runs through sections of the real axis). 

Relations (1.4) in this case have the form 

V I = J (~llnl +l~13n 3 -i((alnlCll +o~3n3c44)u I +(0~1n3cl3 +(x3nlc44)u 3 + 
L 

+(o~ln3e31 + o¢3nlel5)(p)ei(Ct'X)dLx 

V2 = 5, (ff31nl + ~33n3 - i((czln3c44 + t~3nlcl3)Ul + (arnica4 + a3n3c33 )u3 + 
L 

+(oqn~ e~ 5 + tx3n3e33)t~) ei(a'x)dLx 

V3 = I ( Dlnl + D3n3 - i( (aln3et5 + aanle31 )ul + (alnlcl5 + aan3e33)u3 - 
L 

--(alnlall + a3naa33)~)ei(a'X)dLx 

The  system of  integral equat ions  (1.7) retains its form with the rep lacement  S ~ L,  S._., So ~ Lo; 
the kernels o f  the integral opera tors  have the form 

Im 0t~j 

/ / 
I 

Z I J  
/ 

Fig. 2. 
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-I ~0 0.5 
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G~ ((x', x) = G~j (og, x) = PI3 (@J, ct~ 1 (@t, co), to)R+ ((x,, co, xl, x 3) 

3 
G~kj(a',x) = - i  Z Pl , , , (a l ,O~/ (Oq + , ,to),to)q,m(al,a.~j,nl,n3)R+-(al to, xl,x3), 

m=l  
k = l, 3, 4 (3.2) 

G~2j((~',x) = 0, (x I E C 1 

where  

Pl I (O~, CO) = A22 A 33 - A~3, Pl 2 ((z, co) = A21A33 - A 13A32 

pl3(~,to) = A21A32 - A31A22 , R+(ctl ,to, XlX3) = exp[i(~lx I + oc~tj(~l,to)x 3) 

ql! =Cll°~lnl+c44c(3n3 , q12 =c44(xIn3+c130~3nl, q13--e15°~ln3+e31~3nl 

q31 = Cl3(Zln3 "f" c44(t3nl, q32 = C44Ct'I?/1 + c330~3n3, q33 = el50~lnl -t- e330~3n3 

q41 =e31(~ln3 +e15~3nl, q42 =elstx~n~ +e33Ct3n3 , q43 =-(31ltxlnl  +333(3t3n3) 

Discret izat ion of  this system of  boundary  integral equat ions is carried out  in the same way as described 
above  for  the ant ip lane  p rob lem.  The  nodal  unknowns  in this case are the quanti t ies  u,,q, %, D , ,  and • q , 
the coefficients o f  the l inear  algebraic system are found in the same  way as (2.7) in the fo rm of  exphcit  
formulae .  

We will consider two mixed problems as numerical examples which illustrate the use of the proposed approach. 
The mixed problem of the oscillations of a rectangle L = [0, a] x [0, b] with boundary conditions 

XI----0 ,  a"  U l - - 0 ,  ( ~ 1 3 - - 0 ,  D l = 0  

x3=0, b: ~33=o'13=0, ~ = ~ 0  

This problem has an exact solution, which is represented in Fig. 3 by the continuous curve for ka = 
t o a s t ( P / c 3 3 )  = 5, a = b = 1; curves 1, 2 and 3 correspond to a ~1 i(a, x3), ua(a, x3), ~(a, x3), where the light points 
denote the numerical solution for N = 40 and the dark points are for N = 80. 

In addition to the boundary values of the unknowns, this approach also enables one to determine the resonance 
frequencies. Calculations show that even for a small number of boundary elements, the first resonance frequencies 
are determined quite accurately (the error in determining the first three resonance frequencies is less than 1%). 

The mixed problem of the oscillations of a rectangular trapezium with boundary conditions 
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Fig. 4. 



976 A . O .  Vatul 'yan and A. N. Solov 'yev 

x 1=0: u I = u 3 = 0 ,  D ! = 0  

x 3 = 2 - 2 x  1, l ~ < x l < l :  oi jn j=O (i=1,3), Dn=0  

x3=0,  b: t~33=t~13=0, t~= ~ 0  

In Fig. 4 for kb = 2 and b = 1 we show values of the horizontal and vertical displacements and the normal 
component of the electric induction on the lower base of the trapezium for N = 80 (curves l,  2 and 3 respectively), 
where the light points denote the results of calculations for N = 20, and the dark points are for N = 40. The results 
of the calculations confirm that the boundary values of the physical fields have been found quite stably and confirm 
the internal convergence of the method when the accuracy of the approximation of the integral operators is 
increased, despite the ill-conditioned form of a system of the type (2.6). 

Remark. The above approach for reducing boundary-value problem (1.1)-(1.2) to a system of boundary integral 
equations of the first kind (1.7) can easily be transferred to the case when the attenuation in the electroelastic 
medium is taken into account using the concept of complex moduli, by making the replacement 

cmjkl ---> c,njkt(io~), em]k ---> emik(i~), a,!] ---> 3m](io~ ) 

This  r e sea rch  was s u p p o r t e d  by the Russ ian  F o u n d a t i o n  for  Basic  Resea rch  (97-01-00673). 
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